Analysis and Discussion of Deepwater Horizon Accident and Barrier Strategies

Nathalie M. De Oliveira, Jeevith Hegde

Faculty of Engineering Science and Technology, Department of Marine Technology, NTNU

> noliveira@oceaneering.com jeevith.hegde@ntnu.no

January 23, 2015

Content

Introduction

- Summary of Macando Blowout
- Comparison to other similar accidents
- 2 Failed Barrier Analysis
 - Step Diagram
 - MTO Analysis
 - Bow-Tie Diagram
- Proposed Barrier Strategy
 - PSA Process
 - Hazard Identification
 - Specific Barrier Strategy
 - Barrier Requirements

Conclusion

Introduction

Failed Barrier Analysis Proposed Barrier Strategy Conclusion Summary of Macando Blowout Comparison to other similar accidents

æ

▲ 同 ▶ ▲ 目

Accident Summary

Nov-09							Dec-09)						. 8	Jan-10	1					
Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat		Sun	Mon	Tue	Wed	Thu	Fri	Sat
1	2	3	4	5	6	7			1	2	3	4	5							1	2
8	9	10	11	12	13	14	6	7	8	9	10	11	12		3	4	5	6	7	8	9
15	16	17	18	19	20	21	13	14	15	16	17	18	19		10	11	12	13	14	15	16
22	23	24	25	26	27	28	20	21	22	23	24	25	26	1 1	17	18	19	20	21	22	23
29	30						27	28	29	30	31				24	25	26	27	28	29	30
															31						0 0
			Feb-10)			Mar-10					Apr-10									
Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat		Sun	Mon	Tue	Wed	Thu	Fri	Sat
	1	2	3	4	5	6		1	2	3	4	5	6						1	2	3
7	8	9	10	11	12	13	7	8	9	10	11	12	13	1	4 -	5	6	-7	8	9 –	10
14	15	16	17	18	19	20	14	15	16	17	18	19	20	1	-11	12	13	-14	15	16-	-17
21	22	23	24	25	26	27	21	22	23	24	25	26	27		18	19	20	21	22	23	24
28							28	29	30	31					25	26	27	28	29	30	

Introduction

Failed Barrier Analysis Proposed Barrier Strategy Conclusion Summary of Macando Blowout Comparison to other similar accidents

Comparison to other similar accidents

Similar Blowout Accidents

Macondo 2010

Initiating event- High pressures in the wellbore Accident Progression- Well abandonment- kick in well- hydrocarbon leak- two explosions Fatalities- 11 of 126 (9%)

Usumacinta 2007

Initiating event- Bad weather Accident Progression- Storm- hydrocarbon leak Fatalities- 22 of 81 (27%)

Enchova 1984

Initiating event- Unknown Accident Progression- Drilling- Gas leak Fatalities- 42 of 249 (17%) The evacuation process in Deepwater Horizon, did not result in fatalities [Vinnem, 2014].

One could infer that Transocean had better evacuation procedures than PEMEX (Usumacinta) or Petrobras (Enchova).

Texas City Refinery

Initiating event- Overfilling of splitter tower. Accident Progression- Maintenance faults- malfunction of level transmitters- explosion Fatalities- 15 people Injured- 170 people

Image: A math a math

Step Diagram MTO Analysis Bow-Tie Diagram

Step Diagram

Nathalie M. De Oliveira, Jeevith Hegde

TMR4555 Project

Step Diagram MTO Analysis Bow-Tie Diagram

MTO Analysis

Failed MTO Barriers

Failures in the intersection of man and organizational barriers are higher in number than other categories.

The combination of man and organization resulted in six failed barriers

< 同 ▶

Step Diagram MTO Analysis Bow-Tie Diagram

æ

< 4 ₽ > < E

Bow-Tie Diagram

PSA Process Hazard Identification Specific Barrier Strat

PSA Barrier Mangement Process

Figure: [PSA, 2013]

(日) (同) (三) (三)

PSA Process Hazard Identification Specific Barrier Strategy Barrier Requirements

< □ > <

æ

Hazard Identification

SL. No.	Generic Hazard	Hazard
1	Mechanical hazards	High/unstable pressure in the well
		Stability
		Degradation of equipment
2	Dangerous materials	Flammable
3	Thermal hazards	Flame
		Explosion
		Personnel exposed to high temperature and heat radi-
		ation
4	Organizational hazards	Safety culture
		Less than adequate maintenance
		Less than adequate competence
		Crowd control

[Rausand, 2011]

PSA Process Hazard Identification Specific Barrier Strategy Barrier Requirements

Preliminary Hazard Analysis

Terminologies

Generic Hazard

Mechanical, dangerous, thermal and organizational.

Identifier

Identify and arrange different probable causes.

Hazard

Specific hazard in relation to generic hazard.

Accidental Event

Describe what, when, where things can go wrong.

Probable Causes

Causes triggering the accidental event.

Probability

Evaluating likelihood of occurrence of an accident event.

Severity

Evaluating consequences if an accident event occurs.

Initial Risk Level

Factor of probability, severity and lack of preventive measures.

Residual Risk Level

Factor of probability, severity and introduction of preventive measures.

(日) (同) (三) (三)

Nathalie M. De Oliveira, Jeevith Hegde

TMR4555 Project

PSA Process Hazard Identification Specific Barrier Strategy Barrier Requirements

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

æ

Risk Picture

Initial Risk Picture

Frequency/ Consequence	1-Very Unlikely	2-Remote	3-Occasional	4-Probable	5-Frequent
4-Catastrophic			3b, 5e, 5g	1a, 2a, 3a, 5b	
3-Critical		1d	1b, 5f	1c, 5d	4b, 4c, 4e, 5a
2-Major	-			3c, 5c	4a, 4d
1-Minor					

Residual Risk Picture

Frequency/ Consequence	1-Very Unlikely	2-Remote	3-Occasional	4-Probable	5-Frequent
4-Catastrophic					
3-Critical		1d, 2a, 3a, 3b, 5b			
2-Major		1b, 5d, 5g	1a, 3c, 4a, 4c, 4d, 4e, 5a, 5e, 5f	1c	
1-Minor			5c	4b	

PSA Process Hazard Identification Specific Barrier Strategy Barrier Requirements

Barriers according to PSA Memo- Part 1

Organization and Man barriers are included in each barrier element because the selection of the above phylocal barriers depends on the individual/organization perceptions in form of analysis and design.

- · Management focus on safety through campaigns. (Top to bottom and bottom to top)
- · Accountability of the company towards safety incidents through industry and national regulations
- Establishing single point of contacts and analysing it through Social Network Analysis tools
- Continuous improvement of safety drive in the company and expansion of each project's Risk Analysis Assessment to keep up with changes made to the original plan during the execution phase - continuous reassessment of the risk picture.
- Periodically re-optimize maintenance costs
- Investment in continuous training of personnel in best available safety practices
- Investment in mentoring programmes
- Hiring competent personnel
- Sharing lessons learnt to other companies
- Timely certification and maintenance of safety critical systems

TMR4555 Project

PSA Process Hazard Identification Specific Barrier Strategy Barrier Requirements

Barriers according to PSA Memo- Part 2

Organization and Man barriers are included in each barrier element because the selection of the above phylocal barriers depends on the individual/organization perceptions in form of analysis and design.

- · Management focus on safety through campaigns. (Top to bottom and bottom to top)
- · Accountability of the company towards safety incidents through industry and national regulations
- · Establishing single point of contacts and analysing it through Social Network Analysis tools
- Continuous improvement of safety drive in the company and expansion of each project's Risk Analysis Assessment to keep up with changes made to the original plan during the execution phase - continuous reassessment of the risk picture.
- · Periodically re-optimize maintenance costs
- · Investment in continuous training of personnel in best available safety practices
- Investment in mentoring programmes
- · Hiring competent personnel
- Sharing lessons learnt to other companies
- Timely certification and maintenance of safety critical systems

Nathalie M. De Oliveira. Jeevith Hegde

TMR4555 Project

< ロ > < 同 > < 三 > < 三 >

PSA Process Hazard Identification Specific Barrier Strategy Barrier Requirements

▲ 同 ▶ → ● 三

э

Barrier Performance Requirement- Functional Level

Barrier	Performance Stan- dard (Functionality, In- tegrity, Vulnerability)	Performance Standard
Isolate areas with different pres- sures and fluids	Functionality	Established pressure limits in various zones
Prevent collapsing and leak of well formation	Functionality	Loss of drilling mud should not exceed the given limit
Regulate flow of Hydrocarbons	Integrity	Minimum failure rate of BOP through quantitative analysis. Example- SIL analysis
Isolated hydrocarbons subsea	Integrity	Minimum failure rate of BOP through quantitative analysis. Example- SIL analysis
Avoid Rig Drift and Drive off	Functionality	Limits and accuracy dynamic positioning system en- velopes

PSA Process Hazard Identification Specific Barrier Strategy Barrier Requirements

A D

Barrier Performance Requirement- Element Level

Barrier	Performance Stan-	Performance Standard
	dard	
	(Functionality, In-	
	tegrity, Vulnerability)	
Fire and Gas Detectors	Integrity	Determine acceptable failure rate of detectors through quantitative analysis. Example- SIL analysis
Emergency Safety Procedures	Functionality	Be aligned with the risk picture
Safety Alarms	Integrity	Determine acceptable failure rate of detectors through quantitative analysis. Example- SIL analysis
Sprinklers	Integrity	Determine acceptable failure rate of FF equipment through quantitative analysis. Example- SIL analysis
Process Shutdown Systems	Integrity	Determine acceptable failure rate of Process Shutdown System through quantitative analysis. Example- SIL analysis
Lifeboats	Functionality	Have sufficient capacity to include all personnel on- board the rig
Support Vessels	Functionality	Response to an emergency call within a given time limit
Restricted Personnel Access Ar-	Functionality	Normally manned working stations should be sheltered
eas		release
Personnel Protective Equipment	Vulnerability	Guarantees impact and thermal protection to a stipu- lated level

PSA Process Hazard Identification Specific Barrier Strategy Barrier Requirements

< A >

Barrier Performance Requirement- Organizational Level

Barrier	Performance Stan- dard (Functionality, Integrity, Vulnerabil- ity)	Performance Standard
Management focus on safety through cam- paigns	Functionality	Commit management time to safety activi- ties. Safety walk. Walk-Observe-Feedback.
Accountability of the company towards safety incidents through industry and na- tional regulations	Functionality	Social corporate responsibility drive
Establishing single point of contacts and analyzing it through Social Network Analy- sis tools	Functionality	Make contact information of single points of contact public and know
Continuous improvement of safety drive in the company and expansion of each projects Risk Analysis Assessment to keep up with changes made to the original plan during the execution phase - continuous re- assessment of the risk picture.	Functionality	Risk Analysis Assessments should be re- viewed at fixed intervals during planning phase and whenever a major modification to plan occurs during project execution
Periodically re-optimize maintenance costs	Functionality	At predetermined given time intervals, aim- ing to cut a given percentage of labor

PSA Process Hazard Identification Specific Barrier Strategy Barrier Requirements

▲ 同 ▶ → 三 ▶

Barrier Performance Requirement- Organizational Level

Barrier	Performance Stan- dard (Functionality, Integrity, Vulnerabil- ity)	Performance Standard
Investment in continuous training of per- sonnel in best available safety practices	Functionality	Annual evaluation of relevant technical knowledge
Investment in mentoring programmes	Functionality	Ensure mentoring program for new employ- ees
Hiring competent personnel	Functionality	Assessment of technical knowledge and per- sonality
Sharing lessons learnt to other companies	Functionality	Target number of published industry white papers
Timely certification and maintenance of safety critical systems	Integrity	Traceability of equipment and process cer- tificates

Conclusion

- Complex systems = complex accident propagation
- ② Risk analysis must be performed and updated
- Barrier management is paramount
- Organizational and human barriers are constantly in demand during accident progression
- Systems safety should not be neglected in favor of traditional HSE indicators

References

CSB, (2007)

CSB Safety Video: Explosion at BP Refinery. YouTube: http://youtu.be/c9JY3eT4cdM

CSB, (2014)

Deepwater Horizon Blowout Animation. YouTube: https://www.youtube.com/watch?v=FCVCOWejlag

Petroleum Safety Authority Norway- PSA (2014)

PSA regulations. Webpage: PSA regulations

PSA, (2013)

Principles for barrier management in the petroleum industry Technical Report

Rausand, M, (2005)

Lecture Notes- Risk Assessment- Preliminary Hazard Analysis (PHA).

Rausand, M, (2011)

Risk Assessment : Theory, Methods, and Applications. Book- John Wiley & Sons, Inc.

< 同 ▶

References

Sklet, (2006)

Safety barriers on oil and gas platforms. Means to prevent hydrocarbon releases.

(DHSG)(2011)

The Deepwater Horizon Study Group (DHSG)(2011). Final report on the investigation of the Macondo well blowout

▲ 同 ▶ → ● 三

Technical report, Center for Catastrophic Risk Management (CCRM).

Vinnem (2014)

Offshore Risk Assessment Vol 1 and 2 Springer, London, 3rd edition